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This paper describes a three-dimensional finite-difference model of air flow over an 
irregular lower surface. The model is nonhydrostatic and the anelastic approximation 
has been used to filter sound waves. Second-order difference equations are employed which 
provide excellent momentum and energy budgets. An outflow radiation boundary condition 
using a generalized Rreiss extrapolation scheme has been designed and implemented. 

Some two-dimensional applications of the model to air flow over a “Witch of Agnesi” 
mountain barrier are described. Comparison with the linear theory of Queney indicates, 
for the cases treated, that the nonlinearity of the boundary condition has a first-order 
effect on the resulting flow. 

1. INTRODUCTION 

There are a wide variety of problems of interest to both fluid dynamicists and 
meteorologists which require a limited-area model of the equations of fluid flow and 
thermodynamics on a small spatial scale where the lower boundary of the model is 
an irregular surface. Problems of this type include the modeling of air flow over an 
urban region and the associated dispersion and advection of pollutants, convective 
scale dynamics in mountainous regions, mountain wave drag studies, and possibly 
even boundary layer parameterization studies where the nonhydrostatic dynamics 
require explicit treatment. It is well known in atmospheric dynamics that the scale 
analysis leading to the hydrostatic approximation for tropospheric motions breaks 
down when the resolvable horizontal and vertical scales are the same order. Problems 
of this nature require the treatment of nonhydrostatic dynamics and this is often 
accomplished by invoking the “anelastic” approximation [l-3] in which sound waves 
are filtered by appropriate modification of the mass continuity equation. 

The purpose of this paper is to describe a three-dimensional, limited-area, anelastic 
Snite-difference model in which the equations of motion and the first law of thermo- 
dynamics are solved in a domain which has an irregular lower boundary. Some results 
from a two-dimensional application of the model to the problem of flow over a 
“bell-shaped” ridge are presented for ridge heights of 100 m and 1 km, where in both 
cases the half-width of the ridge is 3 km. The first case can be considered as one for 
which the lower boundary condition might be expected to approximate that employed 
in linear theory, whereas in the second case one expects a significant contribution to 
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the near-surface flow from the nonlinearity of the boundary condition. The linearity 
of the boundary condition is based upon both the aspect ratio of the ridge and its 
cross-sectional area. The two calculations presented in this paper consider aspect 
ratios (height/half-width) of l/30 and l/3 where the mountain half-width was kept 
constant at 3 km. The first case has a small enough aspect ratio that one would expect 
linear theory [4, 51 to provide a reasonably accurate approximation. The model 
calculations described here will be compared with a linear calculation of Peltier [18] 
and the departures from linear theory will be discussed for the above two cases. 

The work of Gal-Chen and Sommerville [6, 71 demonstrated the feasibility of using 
the terrain-following coordinate transformation 

5 = H(z - z,)/(H - z,) 

for the treatment of small-scale dynamics. In this transformation z,(x, y) is the 
topographic field height and H is the domain height of the model. A review of other 
approaches which have been employed to treat the irregular lower boundary is given 
in [6]. This coordinate transformation will be adopted in the present paper although 
the numerical methods employed to solve the transformed equation as well as the form 
of the equations themselves are quite different from those of [6,7]. The Chorin [8] 
time-differencing scheme used in [7] has been replaced by centered time differencing. 
The emphasis in the construction of the present model is on matching the conservative 
aspects of the time- and spatial-differencing schemes. As will be shown in the numerical 
analysis and results there is one main nonphysical (numerical) kinetic energy source- 
sink term (which is relatively insensitive to time resolution) due to pressure truncation 
errors and this is about three orders of magnitude below the main physical source- 
sink terms. The use of centered time differencing also keeps the effect of the nonlinear 
advective terms on the kinetic energy well below this level. 

The equations are cast in flux form (e.g., [23, 241) where the Cartesian velocity 
components (u, U, W) are explicitly employed in forming the x, y, and z momentum 
equations, respectively. This differs from the approach taken in [7], where an w 
tendency was calculated explicitly with w the velocity normal to the Z = constant 
surfaces. This resulted in the appearance of Christoffel symbols of the second kind 
in the o equation as part of the advection terms. These terms are of a nonconservative 
nature and make it very difficult to allow for the conservation of either momentum 
or kinetic energy in the model. Thus, one improvement of this model over that of 
[7] is the fully conservative formulation of all advection terms for the momentum 
and kinetic energies in the x, y, and z directions. The principles deduced by Arakawa 
[9] were used to keep the advective terms conservative. 

Some of the model’s practical aspects discussed in this paper are the techniques 
employed for the solution of the diagnostic pressure equation; the suppression of 
wave reflections off the upper lid through the use of Rayleigh friction; and the 
design of a generalized Kreiss [15] radiation boundary condition at the outflow 
boundary, which proved very efficient for the calculations presented in this paper. 

Following a suggestion by Orlanski [ 161 a time-and height-dependent phase velocity 
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was employed to generalize the Kreiss [15] method for the outflow boundary. This 
was found to result in only insignificant reflections from this region. Orlanski [IO] 
has developed a radiation condition which uses the Sommerfeld condition to calculate 
the phase velocity representative of conditions just upstream of the boundary and 
an extrapolation scheme to calculate variables at the boundary. His method was not 
available at the time this work was completed so that the methods used in the present 
context are somewhat different. Hopefully they will add something useful to the 
growing literature on this important problem. 

2. ANALYTICAL EQUATIONS OF THE MODEL 

2.a. Equations in Cartesion Coordinates 

The momentum equations are given by 

a a a 
P'g + x '31 + F r32 + z 733 - Pwh 9 (2.3) 

and the “anelastic” form of the mass continuity equation as 

g (jk) + 6 @J) + & (Pw) = 0. 

Map factors are not included in the model as it is intended for use in the study of 
small-scale phenomena. The terms U, v, and w are the fluid velocity components in 
the X, y, and z directions, respectively; 7ij is the Reynolds stress tensor which will be 
parameterized, using a first-order theory, in such a way as to represent subgrid scale 
turbulence. The last terms on the right-hand sides of (2.1) to (2.3) are Rayleigh friction 
terms which are included for purely numerical reasons. The integration domain is 
bounded above by a rigid lid which has the effect of reflecting vertically propagating 
waves. In order to suppress upper-lid reflections the Rayleigh friction time constant, 
Tp , is allowed to have finite values in the upper levels. Below some level (five grid 
levels for the present calculations) TR is set equal to infinity. Thus the model solutions 
in the Rayleigh friction regions are rather unphysical and will not be used in the 
detailed analysis of the fluid flow. Terms U’ and v’ are some appropriate deviations 
of ZJ and o from a mean value. The thermodynamic variables are separated into two 
components, the terms with overbars denote a basic state of the environment which 
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is in hydrostatic balance, and the primed variables denote perturbations from the 
basic state. The thermodynamic variables may then be expanded as 

P = x4 + P’(X, 6, 
P = Ix4 + P’(% 0, 
e = O(z) + B’(x, t), 

(2.5) 

T = T(z) + T/(x, t), 

where p, p, 8, and T are the dry air density, pressure, potential temperature, and 
temperature, respectively. 

As shown in [l-3] all frequencies avove the Brunt-V%Hl% frequency are filtered 
when the local time rate of change of p is dropped from the mass continuity equation. 
Similar to the Boussinesq [l l] equations, the present set ignores variations of density 
from the background profile except where they are multiplied by the acceleration of 
gravity, g. The deep equations of Ogura and Phillips [3] have been employed in the 
present calculations and since these presume the base state to be isentropic, the base- 
state thermodynamic variables have the forms 

O(z) = 0, (2.6) 
T(z) = O(1 - z/H,), (2.7) 
j(z) = P,(l - Z/z&)1/“, (2.8) 
P(z) = P,(l - z/H,)‘l”-‘/(R,o), (2.9) 

where P,, is the surface pressure at z = 0, K = RJC, , and H, (= C,@/g) is the 
isentropic scale height. In deriving (2.6) to (2.9) the ideal gas law 

P = pR,T, 

the definition of potential temperature 

6~ = T(plPo)-“, 

and the hydrostatic balance relation 

(2.10) 

(2.11) 

dpjdz = -pg (2.12) 

were applied to the reference state variables. A linearization of (2.10) and (2.11) 
results in 

p’ = (pyc2) - p(ep), (2.13) 

where C2 (= yRaT) is the square of the adiabatic sound speed. The numerical model 
is coded in such a manner as to make it an easy matter to change from the present 
perturbation equations to a possibly more accurate set in the future. We could, for 
example, elect to expand the field variables about a given vertical temperature 
profile. The advantage of the deep equations of Ogura and Phillips is that they have 
a very simple energy closure against which the model can be easily checked. 



190 TERRY L. CLARK 

The first law of thermodynamics is represented by 

(2.14) 

where the Hi terms represent the turbulent heat flux on the subgrid scale. 
The symmetric Reynolds stress tensor is specified in terms of the resolved fields 

according to a formulation suggested by Smagorinsky [12] and later discussed by 
Lilly [13] such that 

Tij = pK*Dij . (2.15) 

The deformation tensor, Dij , is given as 

Dij = (z + 2 (2.16) 

and the eddy mixing coefficient for momentum as 

KM = (IcA)~ I Def /, (2.17) 

where d is a measure of the grid resolution of the model and Def is the total defor- 
mation calculated with this grid resolution. A value of k = 0.25 was used in (2.17). 
The deformation is given as 

Def2 = *(Of1 + Dg2 + D&) + Of2 + Of3 + D& . 

The turbulent heat flux terms are specified as 

Hi = ,5K~(8O/&ci), (2.19) 

where KH = KM will be assumed. This nonlinear formulation for KM is reasonable 
for three-dimensional isotropic subgrid scale turbulence. It is also assumed in (2.17) 
that there is an instantaneous adjustment of subgrid scale eddies to the mean flow 
as well as zero turbulent heat flow. More sophisticated first-order subgrid scale 
formulations for the turbulent mixing terms can be considered which do not assume 
zero heat flow. These concepts are discussed by Lilly [13]. 

Equations (2.1) to (2.4) and (2.13) to (2.19) constitute 11 equations for the 11 field 
variables U, U, W, rii , Hi , Dij , Def, KM , p’, p’, and 8’. The specification of boundary 
and initial conditions will complete the model description. Both of these latter aspects 
of the model will be discussed following the presentation of the numerical approxi- 
mations of the equatians. 

2b. Coordinate Transformation for Nonvanishing Topography 

The model equations are transformed from (x, y, z) to (x, y, .F) coordinates, where 

Z = H(z - z,)/(H - zs), (2.20) 
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with Z&C, v), H the lower and upper boundaries of the integration domain. Following 
[6] we obtain the Jacobian of the transformation as 

G112 = 1 - z,lH (2.21) 

and the two metric tensor coefficients as 

and 

G112G13 = ((I/H) - l)(~z,/&~) (2.22) 

G1/2G23 = ((z/H) - l)(az,/Q). (2.23) 

Applying the chain rule, the following relations are obtained. 

f-32 ?!t 
ax z=const = $ (G1’2+) jl-const + $ (G1’2G13+), (2.24) 

G’/2 6 4 1 = 6 (G”“+) li=conat + 2 (G1’2G23#l, (2.25) 
z=const 

where 4 is an arbitrary field variable. Equations (2.24) to (2.26) plus the definition 

w = dZ/dt = (1/G1/2)(+v + G1i2G13u + G1/2G23~) (2.27) 

are used to transform (2.1) to (2.3) to the (x, y, Z) domain. 
In the following sections all base-state overbars on the thermodynamic variables 

will be dropped-because they could be confused with some of the numerical operators. 
The final analytical model equations will not be derived in this paper but will simply 
be presented in their respective numerical forms. All of the analytical equations and 
associated terms are easily derived from (2.1) to (2.19) using relations (2.24) to (2.26). 
It is convenient to Jacobian weight the air density so that in subsequent sections 

p + G112p. (2.28) 

3. NIJMERICAL FORM OF THE MODEL EQUATIONS 

3a. Basic Numerical De$nitions 

The staggered grid of Harlow and Welch [14] is employed to represent the fields 
in finite-difference space. Defining 

x=(i-$)Llx for i = 1, 2 ,..., NX, 

Y =(j-%)b for j = 1, 2 ,..., NY, (3.1) 
z =(k-#)Llz for k = 1, 2,..., NZ 
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as the grid center values of (x, y, Z), where Ax, dy, and AZ are the respective constant 
grid increments, we have 

u = u(i & $,j, k), 
u = u(i,j f ;, k), (3.2) 

w, w = w, w(i, j, k 5 a), 

and 
4 = 4(&i 4, (3.3) 

where + represents any of the scalars p, T, 8, p, KH , Def, 711 , rz2 , Tag. The grid 
locations of the remaining variables are 

712 = 712G f hi + $3 4, 
713 = 713G + 4, j, k zt $1, 
T23 = 723(&j k $9 k zk $1, 

(3.4) 

and 

and 

Hl = W f +,,.A 4, 
ff2 = H2W f 4, k), 
H3 = &(&.A k z!= 9, 

(3.5) 

5 = Z(k f &), (3.6) 

2, = z&j). (3.7) 

The Q enters in (3.1) because the first and last grid points lie outside the integration 
domain; i.e., explicit treatment of boundary conditions was chosen over implicit 
treatment. 

Shuman-type operators [21] will be used to describe the numerical equations 
compactly. For an arbitrary dependent variable rj and an independent variable 7 
we have 

P = C4h + 4/2) + 4bl - 4/2m 

%d = [6(7, + 42) - dh -wwfh 

where r) could be any of x, y, Z, or 7. The time level is given as t = 7 dt. 

(3.8) 

(3.9) 

3.b. Numerical Formulation of the Equations 

The momentum equations are given by 

a,@$ + ADVXS - @%xyf)T = PFXT + KFX’-l + RAYXT, (3.10) 

S,@$ + ADVY7 + (Fxyf>’ = PFYr + KFY7-l + RAYY’, (3.11) 

S,@@$ + ADVZ7 = PFZT + BY7 + KFZ+l + RAYZ7, (3.12) 
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where (3.10) to (3.12) represent the approximation equations for the x, y, and z 
momentum equations, respectively. The nonlinear advective terms are denoted as 
ADVX( Y, 2); the Coriolis terms are explicitly given; the pressure gradient terms are 
denoted as PFX(Y, 2); the eddy mixing terms are denoted as KFX(Y, 2); and the 
Rayleigh friction terms are denoted as RAYX( Y, 2). All terms are represented using 
centered time differences except for the diffusion terms, which are represented using 
forward time steps. The mass continuity equation takes on the simple form 

uiw + ww + up4 = 0 (3.13) 

and the first law of thermodynamics is given as 

S&@ + ADVP = KFT7-I. (3.14) 

The numerical approximation of the diagnostic equation (2.27) defining the w 
field was taken as 

G1/2+, = jj",+, + Gl,2G12~zx + (92G225ji-5 (3.15) 

which can be employed to define a transformation operation, OP, , such that 

G1~2~~ = OP,(j5%, pZu, j?u) (3.16) 

and similarly the inverse operator 

p”w = OPz(G1/2j5%, ,5%, j”v) = OPE(G1/2j?~, +u, +v). (3.17) 

The numerical form of OP, is extremely imortant for the achievement of good vertical 
moment as well as kinetic energy budgets. 

The advective terms conserve the first moments (momentum, potential temperature) 
under all conditions and conserve the second moments (kinetic energy, potential 
temperature variance) providing the second time derivatives are negligible. The 
numerical expressions for the advective terms for momentum are 

ADVX = S,(p”ux&x) + S,(~%;‘) + S&%xt;5, 

ADVY = S,(s’;;“) + S&%y;;Y) + S&%7), 

ADVZ = S,($%=;> + S,(F=;‘) + S,(jizw=~=), 

and for the potential temperature 

(3.18) 

(3.19) 

(3.20) 

ADVT = S&&&) + S,@‘&‘) + S&i%&). 

The numerical form of the pressure gradient terms is 

PFX = -S,(G1j2p) - S1;(~1/2~13p), 

PFY = -S,(G112p> - S,(G11”G23jj~z), 

(3.21) 

(3.22) 

(3.23) 
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and 
PFZ + BY = -8,~ + g(p”(e,lo>’ - G1i2(fl)=), (3.24) 

where the buoyancy term, BY, was included in (3.24) because of the perturbation 
pressure term which contributes to p’. During actual computations the PFZ + BY 
term is modified by subtracting off both the horizontally averaged environmental 
component of 8’ as well as the hydrostatic balancing p term. This procedure was 
found necessary not because of machine precision but because it reduced truncation 
errors caused by the topographical terms (e.g., [22]). Unrealistic domain-averaged 
kinetic energy budgets resulted when this procedure was not followed, even though 
the velocity and potential temperature fields showed no significant change. For the 
calculations to be presented, this procedure made the difference between counter- 
gradient heat flux (kinetic energy thermally driven) to gradient heat flux (kinetic 
energy driven by mesoscale forcing). Thus, for this type of model, it seems imperative 
to keep the perturbation pressure as small as possible in order to retain the qualitative 
aspects of the physics. 

The Rayleigh friction terms are given as 

RAYX = -p”(u - (G’~“u),/G’~“)/r, , (3.25) 

RAYY = +%/~a, (3.26) 

RAYZ = -pzw/rR, (3.27) 

where the mean flow is assumed to be in the x direction with an inflow velocity of 
u&) at x = 0. The main purpose of the Rayleigh friction layer adjacent to the upper 
lid of the box is to eliminate wave reflection, as stated earlier. To the extent that this 
numerical devise is efficient the excitation of normal modes of the Z = 0, H domain 
will also be suppressed. 

The diffusion terms are given as 

KFX = 8,(G1/2,11) + c$,(G~/~~‘~~J + a,(~,, + G1/2G13<XZ + G1/2G23 --z;, (3.28) 
x 

KFY = 8z(G1/ZxY~1J + 8V(G1/2,22) + a,(~,, + WY<’ + G1/2G23<YZ), (3.29) 
x 

KFZ = 8@%13) + 8y(GlizYr23) + a,(~,, + G1/2G13’G2 + G1/2G23 723 -z-zy), (3.30) 

and 

KFT = 8&%%&) + ay(G1/2’H2) + 6,(H3 + G1!2G13$ + G1~2G23~zy). (3.31) 

The numerical specifications of Dij , Tij , Hi , and Def2 will not be given, as their 
derivations from the analytical equations in Section 2 are straightforward. The 
numerical formulations are easily derived, given their respective grid locations from 
(3.3) to (3.5). The calculation of Ddj , KM , 7ii , and the diffusion terms given in (3.28) 
to (3.31) represents a significant portion of the computation time during a model run. 
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Most types of studies will allow a considerable simplication of (3.28) to (3.31) with 
little loss in accuracy (especially considering the first-order nature of the subgrid 
scale parameterization). For example when vertical mixing dominates, a common 
practice is to consider only 713, 723, and H3 . The model was coded for the most 
general case so that sensitivity studies could be performed for the particular physical 
situation and then the appropriate terms dropped. It is a much simpler procedure to 
drop terms from a model than to add them, especially when the model is heavily 
data segmented. The runs presented in this paper considered the full stress tensor, 
7ij , as no sensitivity runs have yet been performed. 

Before the model equations can be integrated in time we must first specify boundary 
conditions as well as consider an appropriate scheme for solving the diagnostic 
pressure equation. The next two sections discuss these points. 

3.b. Boundary Conditions 

The boundary conditons applied at 5 = 0, H are taken as 

w = 6,(pzu) = G,(pv) = 0 at Z = 0, H, (3.32) 

and in order to allow for the conservation of vertical momentum we also set 

--I -z-z 
pzww =o at Z = 0, H. (3.33) 

Equation (3.32) is an approximation to free-slip boundary conditions. A rigorous 
application of zero tangential vorticity at Z = 0 was avoided because of the compli- 
cations involved in applying the pressure boundary condition. As will be shown, (3.32) 
considerably simplifies the pressure boundary condition at Z = 0. Equation (3.33) 
is a result of the constraint that the vertical integral of ADVZ from 5 = 0 to H must 
vanish. 

The boundary conditions for rii at 5 = 0, H were taken as 
. 

---I --I --I --I 
Tll = T22 = T33 = T12 = 0 at Z = 0, (3.34) 

---z 

713 = 723 = &Tp2 = 733 = &T12 = 0 at Z=H, (3.35) 

and the simple drag law formulations 

713 = &/Cl/“) Cd I Vt I(u cos h, + w sin &), at 5x0, (3.36) 

~33 = &(p/G1/2) Cd I V, I(u cos A, + w sin X,), at Z=O (3.37) 

were used to model momentum exchange between the air and ground due to frictional 
drag. On account of the high order of the numerical operators in the stress terms we 
must also prescribe conditions on 713 , 723 outside the integration domain to ensure 
that zero stress results at Z = H and that only (3.36) and (3.37) act to exchange 

58112412-6 
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momentum at Z = 0; i.e., we do not want the free convection regime stresses acting 
at the ground.These conditions are met by 

713 (Z = H + dz) = r13 (5 = H - dz), (3.38) 

-r23 (5 = H + dz) = ,rz3 (5 = H - AZ), (3.39) 

5-13 (5 = --AZ) = (2qs (2 = 0) + (& - 1) 713 (5 = Llz))/(+$ + l), (3.40) 

and 

T23 (5 = -AZ) = (253 (2 = 0) + ($ - 1) 723 (5 = dz))/(& + 1). (3.41) 

In the above equations, h, and h, are the angles of inclination of the topography in 
the x and y directions, respectively. 1 V, 1 is the magnitude of the tangential velocity 
at the “zero” level, which is currently taken as one-half the vertical grid point above 
Z = 0. The above parameterization of momentum exchange at the ground only 
considers momentum exchange via the 713 and 723 stress tensor components. The 
contribution due to the other components has been neglected. A more sophisticated 
formulation for the treatment of boundary layer momentum exchange should be 
considered in the future. 

The turbulent heat flux terms are specified as 

at 5 = 0, H, 

H3 = 0 at Z = 0, 

and 

where (0’) representS the horizontally averaged profile of potential temperature. 
These conditions are nonconducting at 2 = 0. A fixed conduction rate at 2 = H 
is used to suppress cooling at the very upper regions of the model. The effects of 
differential heating along sloping surfaces is not considered in the present work 
although it was the main example treated in [7]. Another boundary condition 
required is the vertical gradient of KM , which is used to calculate free convective 
domain mixing. This is given as 

U&/G) = 0 at 2 = 0, H. (3.45) 

The only remaining vertical boundary conditions are for the perturbation pressure. 
These are calculated such that the tendency of w is zero at both 5 k 0 and H. At 
Z = H the condition is the usual 

6,~ + gG112(plC3’ = BP@, y, H), (3.46) 
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where BP@, y, H) represents all of the nonvanishing terms in (3.12) not associated 
with the pressure. At & = 0 we must consider all three momentum equations as they 
apply to the tendency of p”w through (3.15). We will now see the reason for the simpli- 
fied form of the free slip boundary condition given by (3.32). This reduces 

to 
G1/2S,@& = OP,(S,(j;“w)‘, 6&%j’, a,@$) = 0 (3.47) 

PFZ + ~G’/~(plC2)= + G112mx + G’12mY = BP(x, y, 0) at 2 = 0, 
(3.48) 

where PFZ is taken at Z = 0, PFX and PFY are both taken at I = LIZ/~. BP@, y, 0) 
is the explicit boundary contritution due to nonpressure terms. Equation (3.48) 
reduces to an implicit relation between pressures at Z = --LIZ/~ and interior fields. 
For the full three-dimensional calculation (3.48) requires the inversion of a penta- 
diagonal matrix and the two-dimensional calculation requires the inversion of a 
tridiagonal matrix. An accurate solution of (3.48) was found necessary in order to 
prevent mass and energy leakage through the Z = 0 surface. The calculations of two- 
dimensional flow presented in this paper used a direct method for solving (3.48) 
which allowed for kinetic energy accountability to round-off error (approximately 
to the 12th decimal place). 

The specification of the lateral boundary conditions is somewhat dependent upon 
the phenomenon of interest. For simplicity of presentation, only the lateral boundary 
conditions used in the two-dimensional lee wave calculations will be discussed. 
(The three-dimensional code still has to be converted from the rather uninteresting 
x and y cyclic boundary conditions to this case.) A mean flow is considered in the x 
direction with inflow occurring at x = 0 and outflow generally occurring at x = L. 
At the inflow boundary, free slip boundary conditions are used on the various dynamic 
variables such that 

and 

s,ef = szw = 0 at x=0, (3.49) 

u = uo(z) at x = 0, (3.50) 

[u - uo(z)]x = ii7 = 0 about x = 0. (3.51) 

A Neumann-type boundary condition for the pressure is derived from (3.10) to satisfy 
the constraint 

s@q = 0 at x = 0. 

A zero horizontal gradient is applied to the remaining field variables at x = 0. 
Keeping 0’ equal to a tied upstream profile was found to be numerically unstable 
when the static stability was large because strong gradients developed which produce 
unstable 2 dx vortices. Thus, the potential temperature profile at the inflow boundary 
column had to allow a certain degree of time variation consistent with the time 
variation of w at the inflow region. This seems physically reasonable when internal 
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phase velocities exceed the mean flow speed and consequently influence the tem- 
perature profile a finite distance upstream. The ideal result would be an influence 
at x = 0 which is consistent with the larger scale flow far upstream. The present 
inflow boundary conditions do not rigorously satisfy this condition although their 
inadequacies are not felt to influence the results presented in this paper significantly. 
Possibly superior results could be obtained by applying a radiation condition to the 
perturbation components of the appropriate field variables. 

At the outflow lateral boundary extrapolation schemes which approximate a 
radiation condition are applied to u and 8’ for the present calculations. Once an 
extrapolated future value of ZJ~$’ has been determined at x = L, the Neumann 
condition for pressure is calculated form (3.10) using 

6,@$ = pyug - u’,-9/2At. (3.52) 

Given extrapolated values of u, 8’ and again assuming zero gradients of KM , T<j 
at x = L, the solution for p can be obtained which is then used in (3.10) and (3.12) 
to update u and W. Using an extrapolation scheme consistent with uz+l, z&, is then 
determined. The values of w;$~,~ are then calculated to satisfy the divergence 
equation. 

The method of extrapolation used at the outflow boundary was, at any height 
level, to let 

&+l = 2+L, - && , (3.53) 

where d, is determined as 

A, = G7At. (3.54) 

This method of extrapolation is similar to that used by Orlanski [IO]. If A, # Ax 
then the two variables used in [3.53] are found by linear interpolation in the spatial 
direction only. The calculation of cnr(z, t) was based on w only, which, as pointed 
out by Orlanski [IO], can lead to some degree of incompatibility between different 
fields; i.e., the calculation of G should really be computed from the field which is 
being extrapolated. w was chosen because it seemed to give the least amount of 
incompatibility but still involved the calculation of only one Cnh profile. To calculate 
ph7, spatial and time filters were applied near the outflow region as follows. First C 
we calculate Cph by minimizing the functional, #, 

with respect to Cph ; second we apply the time filter 

-* 
C 

T -T--l At 
ph =T+ Cph +---- TfAt Cph 

(3.55) 

(3.56) 
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to obtain the spatial and time-filtered values of ch*. This last ch* value cannot be 
used in the extrapolation scheme until some small adjustments are made which allow 
mass continuity to be retained. Thus, the last step in determining c,h’ was to let 

-, -* 
Cph = Cph + c;h , (3.57) 

where C,, is calculated in the least-squares sense to ensure that extrapolated values 
of horizontal velocity have the correct column mass flux. If this last procedure is 
not followed, the pressure equation becomes ill-posed and the model will eventually 
become numerically unstable. 

This completes the description of the basic equations and boundary conditions 
required to obtain a solution of the governing equations. The method of solving for 
the pressure will now be discussed. In order to be general, the pressure solution 
technique used for the full three-dimensional code of the model will be described. 

4. DIAGNOSTIC PRESSURE EQUATION 

A divergence equation derived from (3.10) to (3.13) using the definition of w as 
defined in (3.15) results in a diagnostic pressure equation which can be solved using 
the appropriate boundary conditions. Using the operator defined in (3.16), this 
divergence equation has the general form 

S,[S@$] + S,[6,(pyu)t] + (1/G1/2) 8,[OP,(8,pZwf, at%‘, G,cslu’)] 

= s,mVf = --DV7-1/2Llt, (4.1) 

where the desired result of DV r+l = 0 has been employed. The Dv’-l term is retained 
in order to provide a negative feedback on momentum divergence error growth as 
suggested by Harlow and Welch [14]. Separating pressure terms from the remaining 
terms, (4.1) can be written as the diagnostic pressure equation 

a,(PFX) + G,(PFY) + (l/G1/z) G,[OP,(PFZ, PFX, PFY)] - g&m) = F(x), (4.2) 

where F contains the divergence of advective, diffusive, buoyancy, Coriolis, and 
Rayleigh friction terms. In the actual model F is calculated by applying the operator, 
OP, , and applying horizontal divergence to the appropriate terms in (3.10) and (3.1 I). 
For the three-dimensional model (4.2) represents a 25-point operator on pressure, 
whereas for the two-dimensional model it represents a 15point operator. Inspection 
of (4.2) together with the vertical boundary conditions (3.46) and (3.48) reveals that 
the solution of p requires the solution of a rather complicated equation. A double- 
iteration scheme, where the outer interation involves breaking the interior pressure 
operator up into an implicit and an explicit component with the explicit component 
of higher order, was found to be reasonably efficient. The same procedure is applied 
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to the specification of the vertical pressure boundary conditions. More specifically 
the outer interation calculates (4.2) (3.46), and (3.48) as 

GV&$ + S,,+ = G . F + Lp* = Q, (4.3) 

$ijl = dij2 + MP*h (4.4) 

+ijNZ = +ijNZ-1 + PH. (4.5) 

where 4 = G1i2P, p* is the most current value of p; L is the explicit portion of the 
total pressure operator; &, is the explicit lower boundary condition at Z = 0, which 
is a weak function ofp*; and /IH is the explicit upper boundary condition at z = H, 
which is independent of p*. 

The inner iteration consists of using the dimension reduction method of Ogura [17] 
to transform (4.3) through (4.5) to a set of decoupled horizontal Helmholtz equations 
which can be solved by either direct or efficient iterative schemes. Letting Y be the 
column matrix of 4, the equations become 

Az2 GVH2Y + .dY = Z, 

where the transpose of Y is given as 

y= = [A, 9 4ii3 ,.**, $ijNZ-11 
and 

and the matrix A? is ‘defined as 

Letting F and YT represent the eigenvector and inverse eigenvector matrices of -c4, 
(4.6) is then transformed to 

Az2 GVn2P + .9’ = 99, (4.10) 

where 
9=9-Y (4.11) 

and 
.9 = 9-&d9-= (4.12) 

is the diagonal eigenvalue matrix. Converting the lateral pressure boundary conditons 
to a form consistent with 9’ we can then solve the complete set of Helmholtz equations 
given by (4.10). There is one zero eigenvalue in (4.12) corresponding to the fact that 

(4.6) 

(4.9) 
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the Neumann boundary conditions do not allow a unique solution to (4.3). The 
procedure used to force uniqueness was to set the value of B corresponding to the 
zero eigenvalue equal to zero at x = --AX/~. The method used to force uniqueness 
is not important since this part of the solution corresponds to the homogeneous 
pressure solution, which by definition has no dynamic significance. Should the solution 
for p obtained to this point not be accurate enough then we go back to Eq. (4.3), 
replace p* by the newly calculated values, and go through the entire procedure again. 
After the last complete iteration (3.48) is explicity solved for pressures at 5 = -LIZ/~ 
in order to ensure that w = 0 is accurately satisfied at Z = 0. 

The number of outer iterations required is a function of the time resolution as well 
as the number of vertical grid levels. For NZ = 42 the two-dimensional model 
required only two outer iterations whereas when NZ was increased to 82, three outer 
iterations were required for the l-km mountain case. 

5. MOMENTUM BUDGET OF MODEL 

A spatialintegration over the model domain for the x-direction momentum equation 
results in 

; $ pu dx dy dZ = - f (pu2 + G1i2p - G1/2~~~)1~=o dy dZ 

- f( 
az, I 

P -jg 1 713 ) dx dy - f pu’/rR dx dy dz, (5.1) 

where the first integral on the right-hand side of (5.1) represents all the terms acting 
at the lateral x-direction boundary. The y-direction has been taken as cyclic in this 
section for simplicity of presentation. The second integral on the right-hand side of 
(5.1) represents the combined effects of wave and surface frictional drag. The third 
integral represents the loss of momentum due to the Rayleigh friction terms. A similar 
equation results for the y-direction momentum. The volume integral of pu for the 
model is approximated using a linear quadrature such that the integration domain 
is identical to that used in (5.1). The numerical equations of the model which approxi- 
mate (5.1) are then 

NZ-l NY-1 NX-1 

z2 E2 z1 Yi~t(,"u)'Ax AY flif 

= -UFYZ - UPYZ + USTYZ - UPXY - USTXY - URAY, (5.2) 

where UFYZ, UPYZ, and USTYZ represent the differential domain momentum 
flux, pressure gradient force (mesoscale pressure force), and normal stress occurring 
at the YZ planes of the model domain, respectively. UPXY and USTXY represent 
the wave drag and surface frictional stress, respectively, and URAY represents 
the momentum loss due to the Rayleigh friction terms. The yi term in (5.2) is equal 
to unity for i = 2, 3,..., NX - 2 and is equal to 0.5 when i = 1 or NX - 1. This 
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simply defines the integration quadrature. The numerical forms of the respective 
terms in (5.2) are found to be - 

UFYZ = c c zx Ii”=“;‘] rJy d?, 
k j 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

0, (5.7)’ 

(5.8) 

USTYZ = c 1 [mx I;=;-‘] dy &, 
k j 

UPXY = c c Yi( jM,z,) Llx LlJ for Z 
z j 

and 

for Z 

URAY = -1 c c ~@u’/T~) dx dy LIZ. 
2 9 k 

The terms given by (5.3) to (5.8) will be displayed in a time-integrated sense, which 
is denoted by a “T” preceding each term. 

A spatial integration over the model domain for the vertical momentum results 
in the six source/sink terms 

- 
$ P I& dx 4 + $ (~13 $j + 733 +)I,=, dx dy 

+ $ [ g(p $ - G1j3 6) - ,OW/TR] dx dy d2. (5.9) 

These six source/sink terms are found from the model equations to be 

= -WFYZ + WSTYZ - WPXY + WSTXY + WBY - WRAY, (5.10) 

where 
WFYZ = +c c ~&$%=~X)I~;-l] dy dz, 

j 1; 
(5.11) 

(5.12) 

WPXP = +c 1 j? If=“=, dx Lly, 
z j 

(5.13) 

WSTZY = +c c [(713SrZ,? + (T~‘)]~iz=o Ax dy, (5.14) 
i 

WBY = +c ;. c r&(p”m’ - G’/2mz] dx dy &, (5.15) 
a i k 
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and 
WRAY = C C C Y~~w/T~ Ax Ay AZ, 

i j k 

(5.16) 

with Yk = 1 for k = 2, 3,..., NZ - 2 and yk = 0.5 for k = 1 or NZ - 1. All of 
the source/sink terms of the model have equivalent physical terms in the analytical 
equations for both the horizontal and the vertical momentum. It is common knowledge 
that this is not the case for the kinetic energy source/sink terms, which will be described 
for the model in the next section. 

6. KINETIC ENERGY OF THE MODEL 

The grid value kinetic energy, keiik , is defined as 

keifk = ($^ + WY + p”w2*)/2, (6.0 

which defines the kinetic energy at the grid center. The tendency equation for ke is 
found by multiplying (3.10) to (3.12) by 22, v”, and 6 and taking grid averages in the 
x, y, and 2 directions, respectively. The “N” represents a time average where, for 
example, ii = (uT+l + u9/2. The resulting tendency.equation for ke is found as 

S,z’ = - ADVKE - DIVPV + CPK + DIFTRNS + DISS + RKE 

+ {CKI + NLADV + PTR}, (6.2) 

where the terms on the right-hand side represent advection of ke, the pressure work 
term, conversion from potential to kinetic, diffusional transfer, dissipation, Rayleigh 
friction, conversion from kinetic to internal, nonlinear advective generation, and a 
pressure truncation error term, respectively. The terms in brackets are those terms 
which have no physical equivalent terms in the analytical equations. The Ogura and 
Phillips [3] deep equations do not have any conversion from kinetic to internal by 
virtue of the fact that the base state is taken as a dry isentropic atmosphere. NLADV 
terms are due to the nonconservative nature of the centered time-ditIerencing scheme 
for the nonlinear advection terms. The last nonphysical term arises through a slight 
imbalance (in the model) between pressure terms which transfers kinetic energy from 
that associated with motion in the x direction (say) to that associated with motion in 
an orthogonal direction. To cIarify this point consider the kinetic energy equations 
for u2 and w2 where we find 

; (pu2/2) = _ & (GWp) + p -& (Glk) - uG1j2GlS g + *-* (6.3) 

and 

; @w2/2) = - & (G'f"pw) + p ; (G1/2co) + uG112GlS g + 0.. . (6.4) 

sS1124/2-7 
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The last terms of (6.3) and (6.4) convert kinetic energy between pu2/2 and pw2/2. 
The difference between the numerical formulation of these terms in the horizontal and 
vertical kinetic energy equations gives rise to the pressure truncation error, PTR. 

The numerical equations for the various terms are 

---x DIVPV = BZ(G1/2 tip) + 6,(G1/2Yej9’) + &(G’W@), 

DIFTRNS = 6,(G1127,,%) + 8,(??%&‘x) 
x 

Y 
+ &i=(~~~ + G112G13Gx" + -z ) 

+ 3 . . . 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

XY -xz 

DISS = - G1/27,,8,C - mxy,12@ - 713&c 
XI --x.z Y 

- @/2@3~x'~ - 
11 P 

_ G1/2G23x--z 
712 6,li 

_ . . . 9 (6.9) 

RKE= -+%zx-my--‘, (6.10) 

__ --I 
CKI = p[6,(~“~) + &(GlizYG) + 8z(G1/2a)] - geZmz , (6.11) 

NLADV = - (u2/2) mxx - (29/2) my’ - (w2/2) mZZ 

+ [~~x~x8~tt~xx + ~xfi%rtlux= + .-.I At2/2, (6.12) 

and finally the pressure truncation error term is 

z 
x x 

PTR = - U^G1/2@3&jj@= + [(GVG13~* 6,~) * (p)-11 

z 

- (6.13) 
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Strictly speaking (6.11) is not purely a conversion from kinetic to internal energy 
because of the addition of the pressure perturbation component of the CPK term. 
In the form presented in (6.10), CKI should be zero to within truncation error. 

A time and spatial integral of (6.2) leads to 

d KE = TFLUX + TPWRK + TCPK + TDISS + TRKE + TTPR 

+ lower-order terms, (6.14) 

where for the calculations to be presented the lower-order terms are at least an order 
of magnitude smaller than the smallest of the other seven terms. The accountability 
of the total change of d KE was found to exist to the 10th to 12th decimal place after 
as many as 800 time steps. This level of accountability was used to trace coding errors 
in the model. By explicitly calculating all of the terms in (6.2) using a code which was 
independent of the “data generator” code, the coding errors of the model were elimi- 
nated by demanding a round-off balance at each grid point of the model. This balance 
was achieved for the most general case of NX # NY # NZ and dx # dy # dz. 
The terms on the right hand side of (6.14) represent the time-integrated flux of kinetic 
energy through the domain, the work performed by the pressure field at the domain 
boundaries, the total conversion from potential to kinetic energy, the total dissipation 
(pu2 disspation will be denoted separately as TDISSX), total loss due to Rayleigh 
friction (again the pu2 component will be denoted as RKEX), and the nonphysical 
pressure truncation error loss (this term usually acts as a sink). 

This completes the description of the model equations. The subsequent section will 
discuss the physical phenomenon of airflow over a ridge, studied using this model 
in two dimensions, and the results of these calculations. 

7. RESULTS 

Two cases of topography are considered using the “Witch of Agnesi” (see [19, 
P. 5181), 

z, = a2h/(u2 + x2), (7.1) 

with the mountain half-width, a, equal to 3 km and h = 100 m and 1 km. The 
atmospheric stability and mean flow are taken as 

do/dz = 3K/km, (7.2) 

U, = 4 m/set, (7.3) 

w=DV=O, (7.4) 

where U,, is the domain inflow velocity. A nondimensional number which is important 
to this problem is the inverse Froude number, F, based on the ratio of the wave- 
launching period to the Brunt Vaisala period, where 

F = Tf/Tn = (~/U)/(2.rr/(gS)~/~) = 1.18. (7.5) 



206 TERRY L. CLARK 

S is the static stability parameter, which is equal to the logarithmic derivative with 
height of the environmental potential temperature. Linear theory predicts freely 
propagating waves when when F > 1, provided there is a radiation condition allowing 
wave energy to propagate to infinity. The numerical model uses Rayleigh friction 
in the top five levels of the model with 7R = (800, 400, 200, 100, 100) set and 
decreasing TV with increasing height in order to simulate a radiation condition at 
the model’s lid, Z = H. 

The grid resolutions used were dx = 600 m for all cases, and dz = 100 m or 200 m 
depending on the particular run. Table I lists the various runs performed with the 
numerical model. NZ, NX are the number of vertical and horizontal grid points, 
respectively. I, is the position in x about which the topography is centered. Run 18 
is the only case where no surface frictional drag was considered. All other cases 
used C, = 0.001 in (3.36). Runs 14 and 18 have the small mountain height of 100 m, 
whereas all other runs have a mountain height of I km. 

TABLE I 

Description of Runs 

Run h AZ (N-Z N-Q Comments 

14 1OOm 
18 100m 
15 1 km 
16 1 km 
19 lkm 
21 1 km 
17 1 km 
22 1 km 

1OOm 
1OOm 
IOOm 
200m 
200m 
200m 
200m 
200m 

(82, 62) 31.5 
(8% 62) 31.5 713 = 0 
(8% 62) 31.5 
(82, 62) 31.5 
(42,62) 31.5 
(42,92) 46.5 
(42, 122) 61.5 
(42, 122) 91.5 

The 100 m mountain calculations are compared with linear theory in order to 
assess the performance of the numerical model. To do this, linear theory calculations 
were supplied by Peltier [18]. These calculations were based on a full linearization 
of the fluid flow as well as on the treatment of the lower boundary conditions, i.e., 

w(x, 0) = U(O)(ah/ax). 

A description of this linear theory can be found in [20] for the constant stability case. 
Figure 1A shows the near-steady-state field plot of w for run 18. The time level shown 
is t = 4000 sec. Many of the field characteristics of Fig. 1A are in good agreement 
with linear theory, as shown in Fig. 1 b. The vertical wavelength of the w modes is 
approximately 7 % larger for the nonlinear model than predicted by linear theory. 
This slight difference could be due to vertical resoltuion, nonlinearities, or some slight 
differences in the internal physics between the nonlinear model and linear theory. It 
is encouraging to see the numerical model reproducing the detail of the w modes in 
the upper levels of the domain. We see the development of secondary maxima of w, 
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which is in agreement with linear theory. Two strong differences between this nonlinear 
calculation and linear theory, however, are quite apparent. The first is the considerably 
reduced intensity of the w modes for Run 18 below that predicted by linear theory 
and the second is the marked asymmetry of 1 w 1 about the mountain at I = 0. 
These two differences are attributed to the combined effects of the nonlinear lower 
boundary condition and the eddy mixing. 

-36 -2* -12 XP,, 12 24 36 

FIG. 1A. Vertical velocity field, w. for run 18 at t = 4000 sec. Contour interval is 0.02 msec-‘. 
The stippled area represents-the ground. 

8 
B 

00 9 
dkm) 

FIG. 1B. Same as Fig. 1A except for the steady-state linear solution. The contour interval is 
0.03 mse@. 

The marked decrease in the intensity of w with height which is evident in Fig. IA 
is due to the strong eddy mixing to which the flow has been subjected. Subsequent to 
the initial calculations described here, the model has been run for the case h = 100 m 
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with KM = 0. In this case the asymmetry of / w / at Z = 0 about the mountain 
remains. However, beyond a critical height above the crest of the topography the 
maximum amplitude of successive phases of w becomes constant and the comparison 
with linear theory in this region significantly improves in cpnsequence. The effects 
of KM and of its parameterization are a subject of current study. The results of this 
study will be discussed elsewhere. 

Runs 14 and 18 showed only slight differences, which are attributed to the effects 
of including a surface frictional drag. Run 14 had lower tangential winds at Z = 0 
and a lower wave drag value. These differences were only slight and all quaIitative 
aspects of the calculations remained unchanged. The comparison of these two experi- 
ments clearly indicates that the surface frictional drag had no significant influence 
on the overall results. 

Figure 2 displays w for run 15 at t = 4000 sec. The effect of the nonlinear lower 
boundary condition is now quite pronounced. There is a rather strong downslope 
wind component in the lee of the mountain. The asymmetry of ] w ) is still apparent 
for this case. A detailed comparison shows that the degree of asymmetry has slightly 
increased from runs 14 and 18. In Fig. 2 we still see the upper-level modes of w 
indicating the vertical propogation of momentum. The intensity of w in these upper 
levels has increased by a factor of 16 over run 18 even though h has been increased 
by a factor of 10. (The linear theory predicts the field variables as being proportional 
to h.) Figure 2 is the first indication that the effects of the nonlinear lower boundary 
condition may play a significant roIe in the downslope wind problem. The calculations 
and analysis presented in this paper are not extensive enough to warrant any final 
conclusions in this respect. 

FIG. 2. Same as Fig. 1 except for run 15. The contour interval is 0.5 msec-I. 

The wave drag values, & (= -UPXY), from the nonlinear model were calculated 
for all runs. The 100 m mountain case resulted in DW = -294.4 and -316.5 kg s~c--~ 
for runs 14 and 18, respectively. The linear theory (which has a closer physical corre- 
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spondence with run 18) resulted in Dw = -305.0 kg sec2. Thus, the numerical 
model is able to reproduce wave drag values accurately which closely correspond 
to analytical values when h is small. The effect of the nonlinear treatment of the lower 
boundary condition did not affect the magnitude of the total wave drag for this 
particular case of a 3 km half-width and an aspect ratio of l/30. 

The wave drag values for runs 19, 21, 17, and 22 were found to be about three 
times larger than predicted from analytic linear theory. Before discussing the actual 
values of D, from these runs I think it is worth discussing the purpose of these four 
runs. From Table I we see that the main difference among these runs is the lateral 
extent. If the inflow and outflow lateral boundaries are not significantly affecting the 
results, then an asymptotic approach to a converged solution should be expected. 
The initial conditions described as “shock” start-up did not result in any detectable 
degree of convergence for 1 Dw 1 for these runs. The effect of the excited transients was 
to cause a gradual (although still at the 20 % level of total change between runs 19 
and 22) reduction with increasing L. This reduction of 1 D, I was found to vary linearly 
with the upstream distance to the inflow boundary. A recalculation of the first three 
runs with a 100 dt gradual start-up of the mean flow eliminated both the transients 
as well as the convergence problem. Over the first 100 d t the mean flow was increased 
by 1% of its final value at each time step. The Dw values obtained from this smooth 
start-up procedure were D, = -1.00, -0.910, and -0.900 x lo5 kg set-2 for runs 
19, 21, and 17, respectively. These numbers correspond to an asymptotic value of 
D, = 0.899 x lo5 kg set-2 with an “e” folding upstream distance of approximately 
4 km. Since linear theory calculates Dw - h2, the combined effects of the nonlinear 
treatment of the lower boundary condition as well as the nonlinear treatment of the 
fluid flow result in an increase of 1 D, 1 by a factor of about 3 over linear theory. This 
increase can be further supported as being physical because the effect of increasing 
the vertical resolution was to cause a further increase in I Dw /; i.e., Run 15 gave larger 
1 Dm I values than were obtained in run 19. Unfortunetaly, the sensitivity of the D, 
values to the start-up procedure was not recognized until the very late stages of this 
project so that run 15 was only calculated for a shock start-up case. Even so, a com- 
parison of runs 15 and 19 for the same start-up procedure seems justified for isolating 
the qualitative effects of vertical resolution. 

Figures 3A and 3B show an early time sequence of 8’ field plots for run 17 with 
a shock start-up procedure. The shock start-up produces transients which propagate 
downstream and, to a lesser extent, upstream. A good test of the radiation outflow 
condition is that these transients can easily pass through the outflow boundary with 
no significant reflections. In these two figures we see a very weak warm front propa- 
gating downstream at approximately 9.3 m set-l. The last time sequence in Fig. 3B 
shows a leveling-off of the 0’ contours, which do not show any reflections in the later 
stages of the calculations. (The calculations were carried to 200 min.) We can also 
see the low-level warming in the lee of the mountain caused by adiabatic warming 
associated with the downslope winds. 

Figure 4 shows the vertically averaged phase velocities versus t for the shock 
start-up runs. A peak value of CD, is reached as the transients reach the outflow 
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FIG. 4. Vertically averaged “phase” velocities versus I used in extrapolation scheme at the 
outflow boundary. Shock start-up cases. 

boundary and die off with their passing. Run 17 values have not decayed back to 
4 m set-l because of the increased lateral extent. In Fig. 5 a clear indication of the 
reduced transients in the 100 Al smooth start-up calculations can be seen in the err,, 
versus I plots for runs 19,21, and 17. For run 19 there appears to be no indication of 
downstream transients, whereas with increasing downstream extent there is a tendecy 
toward an increased level of transients. 

_... R”N ,7 

__ RUN 19 

------ RUN 21 

FIG. 5. Same as Fig. 4 except for smooth start-up cases. 

Figure 6 shows the energy budget for run 16 with shock start-up. This plot is 
representative of all the cases treated. We can see that the total change in kinetic 
energy has balanced off to a steady-state. The only source term in this time and spatial 
domain-integrated source/sink terms is the mesoscale pressure work. All other physical 
terms act as sinks to A KE. The Rayleigh friction in the x direction is at the 10 % 
level, whereas the pressure truncation error term does not appear in the figure because 
it is about 3 octals below d KE, The nonlinear instability terms arising through the 
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RUN 16 K.E. BUDGET. 

FIG. 6. Kinetic energy budget for run 16. 

numerical treatment of advection are another octave below the pressure truncation 
error term. The model’s budget is clearly dominated by the physical terms with the 
truncation error terms remaining at a very low and acceptable level. As was already 
stated, the total d KE is accounted for the 1 lth decimal. 

8. CONCLUSIONS 

A three-dimensional numerical model with a coordinate transformation allowing 
an exact treatment of the surface boundary condition of zero normal mass flux has 
been described. The second-order finite-difference approximations of the equations 
allowed for good momentum and kinetic energy budgets. The nonphysical source/ 
sink terms for kinetic energy were found for the examples treated to be at least three 
orders of magnitude smaller than the physical terms. 

The generalized Kreiss radiation boundary condition at the lateral outflow boundary 
performed well for the two-dimensional mountain wave calculations. This boundary 
condition worked well even when significant transient waves were excited by a 
shock start-up procedure. 

The application of the model to wave drag studies indicated the importance of a 
proper treatment of the surface boundary condition. Some important aspects of linear 
theory were simulated by the nonlinear model, such as total wave drag for the 100 -m 
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mountain case, the vertical wavenumber of the propagating modes, and the detailed 
structure of the “w” field in the upper levels of the domain. These similarities give 
a certain degree of credibility to the model and suggest an added importance of the 
differences between linear theory which were found for the particular geometry 
and mean flow conditions considered. For the case of constant stability and no shear 
mean flow, where the launching period of the waves (mountain half-width/mean 
flow speed) is only slightly larger than that of the Brunt Vaisila period and where a 
small half-width scale of 3 km is assumed, it was found that a nonlinear treatment of 
the lower boundary conditions results in a high degree of assymmetry for perturbation 
fields (in magnitude) about the mountain center. Strong downslope winds are pro- 
duced in the lee of the mountain with a corresponding region of strong turbulence. 
The intensity of the upper-level fields was weaker than predicted by linear theory. 
The total wave drag was found to increase faster than h2, as predicted by linear theory. 
The calculations presented in this paper were mainly intended to demonstrate the 
model’s capabilities. Far more extensive calculations and analyses must be performed 
before any firm conclusions can be arrived at with respect to the mountain wave drag 
problem. These are the subject of current investigation. 

It was found that the total wave drag value is slightly sensitive to the start-up 
procedure. A smooth start-up allowed for a converged wave drag value with respect 
to increasing lateral extent. This sensitivity is attributed to the upstream propagation 
of transient waves, which is reflected by the free slip inflow boundary condition, 
i.e., the free slip on the perturbation field components. Future calculation of wave 
drag cases with this model will certainly require either a smooth start-up scheme 
and/or the inclusion of an upstream radiation boundary condition similar to that used 
at the outflow. 
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